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Abstract

Parameterized Appearance Models, such as Active Appearance Models (AAM), Mor-
phable Models, or Boosted Appearance Models, have been extensively used for face
alignment. Discriminative methods learn a mapping function between appearance fea-
tures and shape parameters. Different mapping functions have been studied in the liter-
ature, including linear regression, which has proved to perform well when close to the
true solution. Despite its easiness, it still suffers from two major drawbacks: 1) It takes
the whole data without highlighting relations among different regions of the face, and 2)
it is computationally expensive both in time and memory. In this paper, we analyze the
covariance of the training data, and propose a way to find related information. By cluster-
ing those patches that are related, we reach a noise-reduced regression matrix. Then, we
construct a clean mapping matrix, with reduced dimensionality, taking only the relevant
training information. Experiments show that this method outperforms linear regression
for face alignment.

1 Introduction

Linear Regression for face alignment was early presented by Cootes and Taylor [6]. Once
an AAM is built, alignment is formulated as the minimization of the Taylor expansion of the
residual. This implies that it is necessary to recalculate the Jacobian at each iteration, which
might be very expensive. To avoid this problem, only one pre-calculated mapping matrix is
learned by using numerical differentiation, displacing each parameter from the known opti-
mal value on typical images and computing an average over the training set. This method
for obtaining the mapping matrix is proportional to a linear regression between a collection
of perturbations and the residuals sampled on these perturbations. The behaviour of the re-
lation between residuals and perturbations can be modelled linearly when close to the true
solution [20]. In the same manner, it is no necessary to deal directly with the residuals [4].
Working with the texture, instead of with the residual, leads to improve the generalization. In
such cases, an special issue of the appearance model is implicit in the regression matrix. This
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easiness leads to fit images in challenging scenarios, such as in mobile phones [21]. How-
ever, despite its easiness and efectiveness when close to the true solution, linear regression
suffers from two major drawbacks: 1) It is computationally expensive both in time and mem-
ory, and 2) it does not take into account what is relevant in the training data. In this paper,
we present a novel way to analyze linear regression as a method for obtaining the mapping
matrix. We propose finding which information is intrinsically related, removing those parts
of it that might not be relevant. Instead of taking the whole data for regression, we take
only this relevant data, based on a measure of the correlation between different structures
(patches) of the face.

2 Related Work
Parameterized Appearance Models [7, 12, 14, 17] have proven to be a useful way to reg-
ister faces, a crucial step in applications such as face recognition, tracking and synthesis.
Since the work of Cootes and Taylor [6], many methods have been proposed to fit shape
models to new instances. Basically, they can be classified into generative [7, 14, 17] and
discriminative [13]. Recently, several successful approaches combined generative and dis-
criminative methods [18]. There are two main approaches for discriminative fitting. The
first set of methods learns a classifier to decide whether the alignment is correct or not. In
this category, Liu et al. [10, 12], proposed several algorithms to perform gradient descent
on the shape parameters to align w.r.t. the classifier score. A second set of methods learn a
mapping function between image features and shape parameters [8, 17, 19, 20]. For learning
this mapping, a variety of regressors have been proposed: Tresadern et al. [20], and Sauer
et al. [19], used a pool of weak classifiers and random forests; Saragih and Göcke [17] pro-
posed to learn a mapping function for each step in the fitting process. Donner et al. [8]
proposed to use canonical correlation analysis to learn a fast regressor for AAM. Rivera and
Martinez [15] explored a discriminative approach to learn a manifold from graylevel values
directly to landmarks. Sánchez-Lozano et al. [16] proposed a continuous approach that does
not need to sample the space. Cootes et al. [5] used Random Forest regressors to cast votes
of each pixel for the optimal position. Recently, Cao et al. [3] proposed to learn an explicit
regression matrix using boosting. Also, Tresadern et al. [21] used Haar-features to train the
regressor. Among these methods, Tresadern et al. [21] found that linear regression is an use-
ful way to fit images in challenging scenarios, such as in mobile phones. The easiness and
speed when fitting a shape model with linear regression catch the attractiveness of having a
real-time algorithm, for working in non fast devices. Considering that, in this paper we make
a deeper analysis of linear regression for face alignment, towards making it more accurate.

3 Linear Regression
Let d∈ℜp×1 be the features corresponding to an specific image, where p represents the num-
ber of features. Typically, these features are taken within a set of t patches and rearranged
into the column vector d. These patches are located around a set of t points, which follow
a Point Distribution Model, modelled by a shape model with s parameters. Let p ∈ℜs×1 be
the shape parameters. Linear regression methods for face alignment learn a mapping ma-
trix R ∈ ℜs×p between perturbed shape parameters δp ∈ ℜs×1 and the image features d in
the perturbed image space. R is desired to be able to predict the displacement of the shape
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parameters towards the final and true positions. Once the matrix is learned, fitting is formu-
lated as an iterative process, sampling the image and obtaining the shape parameters: First
δp = Rd is obtained, and then the parameters are updated p← p+ δp. For a large set of
training images (N), and a large set of perturbations (M), standard linear regression methods
for training the matrix R minimize the following error:

N

∑
k=1

M

∑
l=1
‖δpl

k−Rdk(f(x;p0
k +δpl

k))‖2
2, (1)

w.r.t. R ∈ ℜs×p, where dk
(
f(x;p0

k + δpl
k)
)

are the image features in the image perturbed
space, f(x;p) is a geometric transformation and p0

k represent the ground-truth shape param-
eters of the k-th image. Here, k indexes images and l is the perturbation number. Onwards,
for the sake of clarity, k will illustrate both images and perturbations. After re-arranging the
features (i.e. dk) into the columns of D ∈ℜp×(NM), and all the perturbations into the matrix
P ∈ ℜs×(NM), the previous problem can be formulated as: minR ‖P−RD‖2

F , where ‖ · ‖F
denotes the Frobenius norm. The optimal R is

R = PDT (DDT )−1, (2)

(assuming that the inverse exists). Let di be the features belonging to the i-th patch, and
Di the rearranged data matrix for this patch. Let Mi j = (Di)(D j)T = ∑

NM
k=1(d

i
k)(d

j
k)

T be the
cross-products among patches; the structure of DDT can be seen as follows:

DDT =

M11 · · · M1t

...
. . .

...
Mt1 · · · Mtt

 . (3)

Figure 1 (left) shows an example of DDT . Let’s consider that di
k = d̃i

k +di
0 + ε i

k, where d̃i
k

is the zero mean features from the i-th patch of the k-th training feature vector, di
0 is a vector

containing the mean features for the i-th patch, computed over Di, and ε i
k is a sample noise

vector, assumed to be zero mean gaussian, independent respect to the image features. We
are assuming that each sample is a contribution of three terms: the zero-mean patch-wise
features, the mean patch-wise vector and the noise. Expanding Mi j, and removing those
terms that are equal to zero, we obtain

NM

∑
k=1

(di
k)(d

j
k)

T =
NM

∑
k=1

(
(di

0)(d
j
0)

T +(d̃i
k)(d̃

j
k)

T +(ε i
k)(ε

j
k)

T ). (4)

Considering that R ∝ (DDT )−1, it will include the noise, as well as the outer product of
patches’ means. So, it is clear that a regular regression will learn from the three terms, which
yields lack of accuracy. Since fitting is formulated as δp = Rd, this noise will be mixed
with the input features. Moreover, we should not expect, in general, that far apart patches
jointly contribute to shape parameters estimates. So, it seems that a simplification of the
regression matrix could lead to a more accurate model. Let’s have a closer look to Eqn.
(4). This equation is the sum of three terms: ∑

NM
k=1(d

i
0)(d

j
0)

T = NM(di
0)(d

j
0)

T is the sum
of the outer products between the means, ∑

NM
k=1(d̃

i
k)(d̃

j
k)

T is the covariance matrix between
the patch i and the patch j and ∑

NM
k=1(ε

i
k)(ε

j
k)

T is the covariance of the noise. It can be
shown that the covariances between patches are masked by the mean products. Figure 1
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shows the matrix in Eqn. (3) (left) and the covariance matrix of the sampled data (second
and third term on Eqn. (4)) (right). As can be seen, the outer products of patches’ means
mask the covariance terms. Filter them out it is highlighted that there are only few terms
having a significative covariance. What we propose is to assume that those non-significative
covariances are caused by the noise. Once the noise is removed, we can cluster the data to
reduce the regression dimensionality, leading to a more informative matrix, which is free of
most of the sample noise. We have to decide first whether a part of the matrix is only noise
or not (Section 4.1). After that, clustering (Section 4.2) will remove all non relevant parts of
the matrix. Then, the new regression method is presented (Section 4.3).

Figure 1: Left: Cross products between samples across the training set (Eqn. (3)) (best
viewed in color). Right: Covariance matrix. Left image illustrates a noisy matrix where it
is difficult to highlight patch-wise relationships. Right image illustrates how there are few
terms that should actually be taken into account for training.

4 Regression Analysis
This section provides a deeper analysis of the linear regression method, highlighting how
relationship between patches influences the final result.

4.1 Correlation

Let D̃i = Di − di
01T

NM be the zero-mean data belonging to the i-th patch1. Then, D̃ =

{D̃i}i=1...t , and D̃D̃T is the covariance of the training data. Our first aim is to discover
whether two patches are related or not. Let σ i j = ‖

(
D̃i
)(

D̃ j
)T‖F be the Frobenius norm of

the covariance matrix between patch i and patch j. We define the modified Pearson correla-
tion coefficient as:

γ
i j =

(σ i j)2

σ iiσ j j =
‖
(
D̃i
)(

D̃ j
)T‖2

F

‖
(
D̃i
)(

D̃i
)T‖F‖

(
D̃ j
)(

D̃ j
)T‖F

. (5)

γ i j ∈ [0,1] is a measure of correlation between structures of independent variables. More
clearly, a patch is a set of features which follow a distribution. The norm of the covariance

11NM ∈ℜNM×1 is a NM-dimensional vector whose elements are all equal to 1



E. SÁNCHEZ-LOZANO ET AL.: BLOCKWISE LINEAR REGRESSION 5

matrix is a measure of the global covariance between all the distributions inside each struc-
ture (patches in this case). If we reduce these structures to the isolated features, then σ i j is
directly the covariance (scalar) between feature i and feature j. Then γ i j is reduced to the
absolute value of the Pearson correlation coefficient. Considering that we do not care about
the sign of the correlation, but only whether the structures (patches) are related or not, the
modified Pearson correlation coefficient is enough for measuring whether patches are related
among themselves. Let P be the set of patches: P = {P1, . . . ,Pt}. Two patches Pi and P j

are related if γ i j ≥ θ , where θ is a threshold.

4.2 Clustering
As a first idea, we would consider to cluster the data based on whether two patches are related
or not. However, two patches can be related with a third one, but not between each other.
Then, we should consider clustering these three patches together. That is, if Pi is related to
Ph, and Ph is related to P j, Pi must be clustered together not only with Ph, but also with P j.
More specifically, Pi is clustered with P j if, and only if, there exists some patch Ph (that can
be Pi or P j itself) that is related both to patches Pi and P j:

Pi ∼ P j⇐⇒{∃Ph ∈ P |γ ih ≥ θ , γ
jh ≥ θ}, (6)

where ∼ represents the "clustering" operation. Now, we will divide the set of patches P into
c clusters of patches (represented as C), so that

C1∪·· ·∪Cc = P
Cl ∩Cm = /0⇐⇒ l 6= m

Pi,P j ∈ Cl ⇐⇒ Pi ∼ P j. (7)

Eqn. (7) separates patches into disjoint clusters. Each patch must meet Eqn. (6) with the rest
of the patches belonging to its cluster, and there will be no patches outside its cluster with
which it meets the equation. Now, let consider the binary matrix

Z = {zi j = 1(γ i j≥θ)}i, j=1,...,t , (8)

where 1a is a binary element, which is equal to 1 if a is true, and is equal to 0 otherwise.
Z shows which patches are related, and shows quickly which patches belong to the same
cluster. Algorithm 1 summarizes how to cluster the data from the input matrix Z.

Algorithm 1 Clustering
Require: Z

1: Compute Ci = { j |zi j = 1}i=1,...,t
2: for i = 1...t do
3: for j = i+1...t do
4: if Ci∩C j > /0 then Ci←Ci∪C j, C j← /0
5: end if
6: end for
7: end for
8: return {Ci > /0}
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4.3 Regression
Looking back to Eqn. (4), we can see that it is not possible to divide the covariance of the
sampled data (left side of the equality) into each different term (right side). However, we can
assume that those covariances that are less than a relative threshold are due to the noise. Let
M̃i j = ∑

NM
k=1
(
(d̃i

k)(d̃
j
k)

T +(ε i
k)(ε

j
k)

T
)

be the covariance of the sampled data, between patch i
and patch j. In order to mathematically reduce the effect of the noise, we define the modified
covariance as:

M̃i j
θ
= zi jM̃i j, (9)

for a given threshold θ . Once clusters are obtained with Algorithm 1, we can sort the train-
ing data so that patches corresponding to an specific cluster stay together. This is equal to
permute the rows of D̃ using a permutation matrix L. If we use the permuted matrix D̃=LD̃,
we find that R is transformed into RLT . That is, the final matrix will have the same permu-
tation, but in columns. Notice that we also have to permute the input data when fitting, in
order to maintain the solution:

δp = (RLT )(Ld) = R(LT L)d = Rd. (10)

So, the way we permute the data is indifferent because the solution remains the same. If we
use L to stick all the patches belonging to a corresponding cluster, we have:

LD̃D̃T LT = D̃D̃
T
=

M̃11 · · · M̃1c
...

. . .
...

M̃c1 · · · M̃cc

 . (11)

Where
M̃lm =

(
D̃l

)(
D̃m

)T
= {M̃i j|Pi ∈ Cl ,P j ∈ Cm}. (12)

Now, D̃l corresponds to all the features from the matrix D̃ belonging to the l-th cluster (re-
mind that D̃i were all the features belonging to the i-th patch). Now, we will replace each
M̃i j by the modified covariance M̃i j

θ
, as well as M̃lm by M̃lm,θ = {M̃i j

θ
|Pi ∈ Cl ,P j ∈ Cm}.

It is trivial to see that M̃lm,θ = 0⇐⇒ l 6= m. Then, we have to compute only M̃ll,θ , which
implies computing only the products in the l-th cluster whose modified Pearson coefficients
are greater than a threshold. The other products within the cluster will be set to zero. Fol-
lowing the structure defined in Eqn. (12), we assume that M̃lm,θ = (D̃l,θ )(D̃m,θ )

T . We have
put the training data so that they are sorted by clusters instead of patches, and we have set to
zero those products among patches that are not related. Working with this structure implies
that Eqn. (11) is replaced by

(
D̃θ D̃

T
θ

)
=

M̃11,θ · · · 0
...

. . .
...

0 · · · M̃cc,θ

 . (13)

Then (
D̃θ D̃

T
θ

)−1
=

(M̃11,θ )
−1 · · · 0

...
. . .

...
0 · · · (M̃cc,θ )

−1

 . (14)
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With the new products, Eqn. (2) is simplified now as:

R= P
(
(D̃1)

T . . .(D̃c)
T )
(M̃11,θ )

−1 · · · 0
...

. . .
...

0 · · · (M̃cc,θ )
−1

 . (15)

After some linear algebra, it can be seen that

R=
(
R1 . . .Rc

)
, (16)

where
Rl = P(D̃l)

T (M̃ll,θ )
−1. (17)

That is2:
Rl = P(D̃l)

T ((D̃l,θ )(D̃l,θ )
T )−1

. (18)

Let’s have a closer look to Eqn. (18). We have reached a solution that is similar to the original
presented in Eqn. (2). However, instead of taking into account all the training data, we have
removed the mean data, we have clustered them, and removed all the weakly correlated
products. The solution obtained is similar to training a linear regressor for a modified version
of each cluster. With this solution, we are considering a more informative linear regression
that leads to a more accurate solution with the same data. Also, each cluster will have,
in most cases, less dimensions than the original problem providing a better generalization.
Algorithm 2 summarizes the proposed algorithm for training.

Algorithm 2 Blockwise Linear Regression Training
Require: D, P, θ , t patches

1: Compute D̃i = Di−di
01T

NM , for each i = 1, . . . , t
2: Compute γ i j (Eqn. (5)), for each i, j = 1, . . . , t
3: Compute Z (Eqn. (8))
4: Obtain clusters {Cl}l=1,...,c (Algorithm 1).
5: Obtain M̃i j

θ
= zi jM̃i j = zi jD̃iD̃ j

6: for all Cl do
7: Compute M̃ll,θ = {M̃i j

θ
, Pi,P j ∈ Cl}

8: Compute D̃l
9: ComputeRl (Eqn. (17))

10: end for
11: return {Cl ,Rl , dl0}l=1...c

Fitting is now calculated as follows. Consider the input data d and the mean feature
vector d0 = (d1

0 . . .d
t
0) = LT (d10 . . .dc0). Shape parameters are now computed as

δp = RL(d−d0)

=
c

∑
l=1
Rl(dl−dl0), (19)

2It is worth noting that we do not need to replace the first term D̃l by the modified D̃l,θ because the zero terms
in M̃ll,θ play the filtering roll. This way, also, the formulation is coherent, because D̃l,θ is not completely defined,
and it is not trivial to obtain it from M̃ll,θ
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Figure 2: Z matrices for different values of θ . White elements correspond to 1 and black
elements to 0. As can be seen, when θ is higher, less relations are found around the non-
diagonal elements.

where dl are the features of the input data belonging to the l-th cluster, rearranged as a
column vector, and dl0 is the rearranged column vector containing the learned mean features
of l-th cluster. As said above, eachRl has been trained only with the information associated
to the l-th cluster. Summarizing, we have first obtained the modified Pearson correlation
coefficient, and we have divided data into clusters. Then, we have set to zero all cross-
products corresponding to weakly correlated patches. Then, a regressor was trained for each
cluster. It is important to remark the role of θ . It is trivial to see that, when θ = 0, Eqn. (18)
is the same as Eqn. (2), but removing the mean, since there is only one cluster containing
all the patches, and all the patches are related. When θ = 1, c = t, and each patch is itself a
cluster.

5 Experimental Evaluation

5.1 Training

We have trained our algorithm using the Multi-PIE database [9]. The shape model was
learned using 2500 frontal and profile images, and consists of 25 non-rigid shape basis.
Procrustes analysis was used to extract rigid information from training data. Our Regression
Model consists of three levels, two for rigid registration (coarse and fine), and one for non-
rigid alignment. That is, Model = {Rcoarse,R f ine,Rnon−rigid}. All these three levels were
trained using Algorithm 2. The input data D was obtained by perturbing the ground-truth
coefficients, using 800 images from the Multi-PIE database and 200 images from the LFPW
database [1]. The number of pertubations was set to 100. This perturbation was obtained
applying a gaussian distribution with standard deviation equal to 2 times the variance of each
mode. We have used normalized graylevel values as feature vectors, and selected t = 15
points, which correspond to the typical internal points of the face, excluding the center of
the eyes. These points, jointly with these centers, shape the typical me17 for measuring the
fitting error. For each point, we have extracted its corresponding patch of pixels. We have
trained models for θ = {0,0.01,0.05,0.1,0.2,0.3,0.5,1}. Finally, we have also trained the
discrete regression described by Eqn. (2). Figure 2 shows the binary matrices Z for each
model at the non-rigid stage. These matrices show directly how data must be clustered.
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Figure 3: Results obtained for the BioID database. Blue line corresponds to the average set
of points, green line corresponds to Eqn. (2), and others corresponds to θ = 0 (red line),
θ = 0.05 (black line) and θ = 1 (pink line).

5.2 Testing
We have tested our models in the BioID database [11], which consists of 1521 images,
landmarked with 20 points. The process of fitting was as follows: We first detected the face
using the Viola-Jones detector [22]. Then, the eyes were detected using ASEF filters [2].
With the eyes location, we have as initial points the average set. Then, the other 15 points
(for measuring the me17) were fitted using our models. We have compared three of our
models θ = {0,0.05,1} with the original model described by Eqn. (2). Figure 3 shows the
cumulative me17 error (as a percentage of the interocular distance) for these models, for
those images where the eyes detection was successful (∼ 1400 images). The best results
are obtained with θ = 0.05, although they may vary depending on the point distribution and
the data set. This suggests that there must be taken into account that some patches provide
more accuracy when they are considered together. As can be seen, there is a significative
improvement in our method respect to the original one, suggesting that blockwise clustered
linear regression is able to provide more accuracy, keeping a fast fitting (only sampling,
permuting, and matrix multiplications are needed).

6 Conclusions
We have presented a blockwise linear regression method for efficiently training a mapping
matrix. This method makes use of a correlation coefficient between data structures to detect
weakly correlated image-feature patches and to filter their product out from the regression
matrix. A clustering algorithm sorts then the remaining regression elements to format the
matrix blockwise with many off-diagonal null blocks. It has been demonstrated that, with a
fixed threshold, training the matrix is mathematically equal to training one regressor for each
cluster, which leads to work with less dimensions than in the original problem, improving,
thus, the accuracy of the regression. Results illustrates that considering only relevant second-
order statistics of the data-features is more accurate than not preprocessing the data at all.
However, there is not an optimized method for selecting the threshold. Future work will
include a method for selecting it, as well as online regression for adapting an universal model
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to each user. The work presented in this paper is quite generalizable because we have not
made any assumption about the type of image data, features, patches, patch-wise relationship
measurements, or even regressors. In short, this preliminary study shows that a blockwise
clustered and noise-reduced linear regression matrix is able to improve accuracy and speed
of fitting with respect to the standard approach, and pave the path for a new set of algorithms
that pay more attention to the information contained in the regression matrix.
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