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Abstract. Parameterized Appearance Models (PAMs) such as Active
Appearance Models (AAMs), Morphable Models and Boosted Appear-
ance Models have been extensively used for face alignment. Broadly
speaking, PAMs methods can be classified into generative and discrim-
inative. Discriminative methods learn a mapping between appearance
features and motion parameters (rigid and non-rigid). While discrim-
inative approaches have some advantages (e.g., feature weighting, im-
proved generalization), they suffer from two major drawbacks: (1) they
need large amounts of perturbed samples to train a regressor or clas-
sifier, making the training process computationally expensive in space
and time. (2) It is not practical to uniformly sample the space of motion
parameters. In practice, there are regions of the motion space that are
more densely sampled than others, resulting in biased models and lack of
generalization. To solve these problems, this paper proposes a computa-
tionally efficient continuous regressor that does not require the sampling
stage. Experiments on real data show the improvement in memory and
time requirements to train a discriminative appearance model, as well as
improved generalization.

1 Introduction

Image alignment [4, 5, 12, 14, 15, 20, 23, 24] is a fundamental building block of
many computer vision based systems ranging from robotics to medical diag-
nosis. Parameterized Appearance Models (PAMs) such as the Lucas-Kanade
method [24], Eigentracking [6], Active Appearance Models (AAMs) [1, 12, 15,
20, 23], Boosted Appearance Models [13] and Morphable Models [5] are among
the most popular methods for appearance-based image alignment. These mod-
els have been successfully applied to face alignment, which is a key step for
many applications in facial image analysis including face recognition and facial
expression analysis.

Broadly speaking, there have been two main streams to fit PAMs: genera-
tive and discriminative. In generative approaches [1, 4, 15, 22–24], the appear-
ance variation of faces is modeled by performing Principal Component Analysis
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Fig. 1. Differences between discrete (left) and continuous regression (right). To compute
discrete regression, we need to generate many pairs of motion parameters (rigid and
non-rigid) and its corresponding features extracted from the image (left). Our method
avoids the need to explicitly generate pairs of motion and texture samples by integrating
over the continuous space of the motion (right).

(PCA) (or kernel extensions) on training samples. Once the model has been
built, alignment is achieved by minimizing a cost function w.r.t. motion param-
eters (i.e., rigid and non-rigid); this is referred to as the fitting, registration, or
alignment process. Although generative approaches achieved good results, these
methods emphasize alignment by minimizing the reconstruction error. This typ-
ically results in local minima [4] and lack of generalization [14, 20]. On the other
hand, discriminative approaches [12, 14, 20] directly learn a mapping from image
features to rigid and non-rigid parameters, effectively marginalizing the need to
minimize reconstruction error. This mapping can be obtained by linear regres-
sion [1], more complex regression models [11, 12, 20] or through a hard decision
classifier (e.g., SVM), which outputs whether the model is well aligned [14].
Although widely used, a major problem of standard discriminative approaches
is its computational complexity in training. This paper presents a continuous
regression approach to efficiently train discriminative methods.

The standard training in discriminative models is as follows; let d ∈ <p×1
(see Footnote for the notation 1) be a vectorized image. Discriminative models
learn a mapping, G, between perturbed motion parameters, δp (rigid and non-

1 Bold uppercase letters denote matrices (D), bold lowercase letters denote column
vectors (e.g., d). dj represents the jth column of the matrix D. Non-bold letters
represent scalar variables. tr(D) =

∑
i dii is the trace of square matrix D. ||d||2 =√

dTd designates Euclidean norm of d. ‖A‖2F = tr(ATA) designates the Frobenius
norm of matrix A. diag is an operator that transforms a vector to a diagonal matrix.
Ik ∈ <k×k denotes the identity matrix.
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rigid) and the image features in the perturbed image space, d
(
f(x; p0 + δp)

)
,

where f(x; p) is a geometric transformation and p0 represent the ground-truth
motion parameters. Mathematically, the mapping is:

δp = G
(
d
(
f(x; p0 + δp)

))
. (1)

In the following, and without loss of generality, we will illustrate a drawback of
discriminative models using linear regression, i.e. G(x) = Rx.

The matrix R is learned by minimizing
∑N
i=1

∑M
j=1 ||δpij − Rdi

(
f(x; p0 +

δpij)
)
||22, w.r.t. R, given a large number of images (N) and a large number of

perturbations (M). This standard approach to learn discriminative models suf-
fers from two major computational drawbacks. First, ideally the sampling needs
to uniformly sample the motion parameter space, p (typically 30 dimensional
space), to achieve good generalization. This results in an exponential number
of samples with respect to motion parameters. So, in practice, the sampling is
rarely uniform. Second, even with non-uniform sampling, the number of samples
needs to be large, which leads to large memory and computational requirements.
To solve these issues, this paper proposes a continuous regression method, which
computes the regression without the need of sampling the training image. The
main idea of the paper is illustrated in Fig. 1. In the left image we use the
discrete regression approach, that for each of the N training images, needs M
perturbed samples, whereas continuous regression (right) only needs to sum over
the N images, and can integrate uniformly over the space of motion parameters.

2 Previous work

This section briefly reviews previous work on discriminative fitting and functional
data analysis.

2.1 Discriminative fitting of Appearance Models

Image alignment algorithms have become increasingly important in computer
vision. In particular, Parameterized Appearance Models (PAMs) [4, 5, 12, 14, 15,
20, 23, 24] have proven a useful way to register faces, a crucial step in applications
such as face recognition, tracking and synthesis.

Broadly speaking, PAMs optimization algorithms can be classified into gen-
erative and discriminative. Generative approaches [4, 15, 20, 22, 23] learn a gen-
erative model that can reconstruct the image, and the fitting algorithms find
the motion parameters that minimize the reconstruction error. Generative ap-
proaches can suffer from severe local minima and lack of generalization [2, 14].
On the other hand, discriminative approaches learn a mapping function from the
image features to motion parameters [1, 20] or to discrete labels of well-aligned
vs. badly-aligned [2, 14]. Recently, several successful approaches combined gen-
erative and discriminative methods [29, 30]. There are two main approaches to
AAM discriminative fitting. The first set of methods learns a classifier to decide
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whether the alignment is correct or not. In this category, Liu et al. [2, 14], pro-
posed several algorithms to perform gradient descent on the motion parameters
to align w.r.t. a classifier score that classifies if the alignment is correct or not.
A second set of methods learns a mapping function between image features and
motion parameters [9, 16, 18, 20]. To learn this mapping, a variety of regressors
have been proposed: Tresadern et al.[16] and Sauer et al. [18] used a pool of
weak classifiers and random forests; Saragih and Göcke [20] proposed to learn a
mapping function for each step in the fitting process. Donner et al. [9] proposed
to use canonical correlation analysis to learn a fast regressor for AAM. Recently,
Rivera and Martinez [10] explored a discriminative approach to learn a manifold
from graylevel values directly to landmarks. Alternatively, generative approaches
can also be fitted in a discriminative manner [17, 19].

2.2 Linear Discriminative fitting

Let u = f(x; p) ∈ <2l×1, denote a geometric transformation of pixel locations,
that transforms a vector field x ∈ <2l×1 of image coordinates to another vector
field u ∈ <2l×1, i.e. [u1, v1, · · · , ul, vl]T . l represents the number of pixels and
p the vector of motion parameters. For instance, for an affine transformation
(ui, vi) relates to (xi, yi) by:[

ui
vi

]
=

[
a1 a2
a3 a4

] [
xi
yi

]
+

[
a5
a6

]
, (2)

where p = [a1 a2 .... a6]. Also, a non-rigid transformation can be represented by
considering x as linear combination of a given set of basis, that is, [x1, y1, · · · , xl, yl]T =
x + Bsc, where Bs is the non-rigid shape model learned by performing PCA on
a set of registered shapes [17]. In this case, a, c represent the affine and non-rigid
motion parameters respectively, and p = [a; c] ∈ <k×1, where k − 6 represents
the number of principal components for the shape. di(f(x; p0

i + δpij)) ∈ <d×1

represents a feature or pixel intensities vector extracted from the ith image at
the locations given by f(x; p0

i + δpij). p0
i represents the ground-truth rigid and

non-rigid parameters, and δpij is a perturbation of these parameters.
Standard regression methods for alignment minimize the following error:

N∑
i=1

M∑
j=1

‖δpij −R di(f(x; p0
i + δpij))‖22, (3)

w.r.t. R ∈ <k×p, where i indexes images and j is the perturbation number. After
re-arranging the features (i.e. di) into the columns of D ∈ <p×(NM), and all the
perturbations into the matrix P ∈ <k×(NM), the previous problem can be for-
mulated as: minR ‖P−RD‖2F . The optimal R is R = PDT (DDT )−1 (assuming
that the inverse exists). However this approach has three main problems: (1) It
is computationally costly in space (O(NMp)) and time (O(N2M2)). (2) It is not
practical to sample uniformly the motion parameter space. Non-uniform sam-
pling can lead to biased models that lack generalization. (3) The matrix DDT
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is typically rank deficient. To solve problem (3), there are several approaches.
For instance, it is possible to compute principal component regression by pro-
jecting D onto the principal subspace. Alternative, reduced rank regression, the
pseudo-inverse or regularized regression can be done to solve the rank deficient
problem [7]. However, it remains unclear how to solve problem (1) and (2). Re-
cently Huang et al. [8] proposed a regression method robust to non-uniformly
sampling of the data space; however, the method does not scale well for high-
dimensional data such as non-rigid image alignment. In the following sections,
we describe a method to compute regression without need of sampling.

2.3 Functional Data Analysis

Our work is related to previous works on Functional Data Analysis (FDA) [25].
FDA is a branch of statistics that analyzes data providing information about
curves, surfaces or functions varying over a continuum. For instance, images
can be modeled as bidimensional continuous function and multivariate analysis
methods (e.g., PCA, LDA) can be extended to the continuous domain. In the
context of computer vision, Levin and Sashua [26] used a continuous formulation
of PCA to solve the bias of learning PCA from discrete non-uniformly distributed
samples. Recently, Igual and De la Torre [3] extended Procrustes Analysis to
Continuous Procrustes Analysis in order to learn a 2D shape model from a 3D
object deformation. In this paper, we will apply similar ideas and propose the
continuous regression method.

3 Continuous Regression

A major limitation of standard regression methods is the need to sample the mo-
tion parameter space. Our main contribution is to provide a functional analysis
framework [25] for regression. Our main assumption is that δp is a continuous
variable, and we can integrate Equation 3 over the set of motion parameters δp.
That is, continuous regression minimizes:

min
R

N∑
i=1

∫
‖δp−R di(f(x; p0

i + δp))‖22dδp, (4)

where the limits of the integral are finite. Once we have formulated learning the
discrete models as a continuous problem, the next step is to solve the integrals.
In this paper, we will focus on solving the integral expressions for non-rigid
parameters, that is, p = c. We estimate the rigid parameters separately using
discrete regression, because when using the face detector as an initialization,
the variation of the rigid parameters is small (locally behaves linearly). In this
case, the regression matrix can be estimated using few samples. On the other
hand, non-rigid parameters are highly non-linear and a better sampling strategy
is needed. So, in the following, δp will represent a perturbation in the k − 6
dimensional shape parameter space with fixed rigid parameters 2.

2 Onwards, k represents only the non-rigid shape parameters
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Let Ei(R, δp) = ‖δp−R di(f(x; p0
i + δp))‖22 be the error function associated

to the ith training sample, then we can re-write Equation 4 as:

min
R

N∑
i=1

∫ σ1

√
λ1

−σ1

√
λ1

∫ σ2

√
λ2

−σ2

√
λ2

· · ·
∫ σk

√
λk

−σk

√
λk

Ei(R, δp) dδp1δp2 · · · δpk, (5)

where λj is the eigenvalue associated to the jth shape bases, and σj is the
parameter that determines the number of standard deviations considered in the
integral (typically between 2.5 and 3).

In order to find an analytic solution to previous integrals, we do a linear
approximation, which is common in many alignment algorithms [5, 6, 24]:

di(f(x; p0
i + δp)) ≈ di(f(x; p0

i )) + Jp
i δp, (6)

where Jp
i ∈ <p×k is the Jacobian matrix of di(f(x; p0

i )) w.r.t. p, evaluated at
p0
i . Onwards, and as a convenient abuse of notation, di = di(f(x; p0

i )). Using
this approximation, we can further expand Equation 5 as:

R = arg min
R

∫ N∑
i=1

δpT δp dδp− 2

∫ N∑
i=1

δpTR(di + Jp
i δp) dδp+

+

∫ N∑
i=1

(di + Jp
i δp)TRTR(di + Jp

i δp) dδp.

(7)

A necessary condition for the minimum of Equation 7 is that the derivative
vanishes w.r.t. R. After some linear algebra, it can be shown that

∂E

∂R
= −

(∫
δpdδp

) N∑
i=1

dTi −
(∫

δpδpT dδp

) N∑
i=1

(Jp
i )T

+ R

(∫
dδp

) N∑
i=1

did
T
i + 2R

N∑
i=1

di

(∫
δp

)T
(Jp
i )T dδp

+ R

N∑
i=1

(Jp
i )

(∫
δpδpT dδp

)
(Jp
i )T = 0k×p.

(8)

The analytic solution for these integrals is as follows:∫
dδp = 2k

k∏
i=1

σi
√
λi ,

∫
δp dδp = 0k×1 ,

∫
δpδpT dδp = 2k

( k∏
i=1

σi
√
λi
)
Λ(σ),

where Λ(σ) = diag( 1
3{σ

2
i λi}ki=1) ∈ <k×k, and σ = (σ1, σ2, . . . , σk)T . See Ap-

pendix A for the derivation of these integrals. Once the integrals are solved,
Equation 4 has a closed-form solution as:

R(σ) = Λ(σ)
( N∑
i=1

(Jp
i )T
)( N∑

i=1

(
did

T
i + (Jp

i )Λ(σ)(Jp
i )T
))−1

. (9)
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Observe that in Equation 9, we sum over images (i = 1 . . . N) but not over the
perturbations.

A closer look to Equation 9 reveals an interesting phenomenon of the pro-
posed method. Let us consider Ki = did

T
i +(Jp

i )Λ(σ)(Jp
i )T and S =

∑N
i=1

(
Ki

)
.

The matrix S is the covariance of the image features (in the linearization point)
plus the weighted covariance of the Jacobians. Unlike the discrete method, that
computes the covariance as the sum of perturbed samples, the continuous method
approximates this covariance by the weighted outer product of Jacobians. Recall
the dependence of the regression matrix with σ, that is, R(σ) indicates that the
regression matrix is a continuous function of the limit integral. This continuous
regression matrix can be used within an annealing strategy in the fitting process,
where in the first iterations the σ value is higher and it is lowered over iterations.
Observe that computing the regression matrix for different σ’s is trivial.

Observe that for S ∈ <p×p to be invertible the rank(S) must be equal to p,
where p is the number of pixels. However, each image can, at most, contribute
a matrix with rank k + 1 to S, where k is the number of non-rigid parameters.
This is because each image is expressed as a linear combination of at most k+ 1
independent basis, that is (rank(Ki) ≤ k + 1). Then, the rank(S) ≤ N(k + 1).
To ensure full-rank, the minimum number of images that is required will be:

N ≥ p

k + 1
. (10)

In most applications, p � k + 1, and it is not practical to label that many
images. A common approach to solve the small sample size problem is to use
principal component regression, reduced rank regression or regularization meth-
ods [7]. In this paper, we will use principal component regression (PCR) and
regularization for its effectiveness and easiness of implementation. In principal
component regression, the data D is projected into the principal components
BT
a ∈ <p×a, that preserve a certain % of variance. In our case, we preserve 90%

of the energy. Recall that the optimal transformation is Canonical Correlation
Analysis (CCA), but in presence of few training samples, PCR typically removes
noise and outperforms CCA without regularization. After projecting the data
and regularizing onto the principal component, Equation 9 becomes:

R = Λ
( N∑
i=1

(BT
a Jp

i )T
)( N∑

i=1

(
BT
a (di−d0)(di−d0)TBa+(BT

a Jp
i )Λ(BT

a Jp
i )T
)
+λIa

)−1
.

(11)
Now, Ki =

(
BT
a (di − d0)(di − d0)TBa + (BT

a Jp
i )Λ(BT

a Jp
i )T
)
. If λ = 0,

then S =
∑N
i=1 Ki ∈ <a×a, and the number of images minimum to ensure that

rank(S) = a becomes

N ≥ a

k + 1
� p

k + 1
. (12)

4 Experiments

This section describes experimental results that compare our continuous regres-
sion method to fit discriminative appearance models versus standard approaches.
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In the first experiment, we compared the memory requirements for each method.
In the second experiment, we compared the time to compute the continuous re-
gression versus the discrete one, as a function of the number of images and
perturbations. Finally, the last experiment shows the improvement of our con-
tinuous approach vs. standard methods in fitting unseen faces. For the memory
and timing experiments, we used the public available face database LFPW [21]
and the associated labels. This database consists of 1432 faces downloaded from
the web using simple text queries on sites such as google.com, flickr.com and
yahoo.com. Each image was labeled with 29 landmarks. For the generalization
experiment we have also used the BioID database [28], that consists of 1521
images, which are labeled with 20 landmarks. The shape model was learned us-
ing 2500 frontal and profile images of the Multi-pie database [27], and has 25
non-rigid shape basis. The rigid parameters are learned using discrete regression,
and they will be the same for all methods. In all cases, we have used normalized
graylevel values as feature vectors. For each landmark, we extracted a patch of
10×10 pixels. The features vector consists of the whole set of patches, rearranged
as column vectors.

4.1 Memory Requirements

The first experiment compares the memory requirements for the discrete vs.
our proposed method. In the continuous regression we only needed memory to
compute matrices S ∈ <a×a, J ∈ <a×k and Λ ∈ <k×k, where a is the number
of principal components (≈ 100), and k the shape parameters (25). Typically,
a >> k, and hence the cost in memory is approximately O(a2). In the case of the
discrete regression, the computational cost is O(NMa), where N is number of
images and M number of perturbations. Recall that both methods used the same
PCA projections, and hence we exclude the memory requirements to compute
PCA. PCA was applied to the texture set, retaining 90% of energy (a = 173).
Fig. 2 (left) represents the memory requirements as a function of the number
of the training images and the number of perturbations. We selected 5 sets for
training using 15, 25, 50, 100 and 200 training images respectively. For each set,
we used five perturbations (1, 10, 20, 50, 100) for the discrete regression. As can
be seen, as the number of samples increases, memory requirements grows linearly
(pink) for the standard regression. In contrast, our continuous regression keeps
memory constant and has a computational cost equivalent to one perturbation.

4.2 Training Time

This experiment tests the training time for both discrete and continuous meth-
ods. The most computationally expensive part of the continuous regression
method is computing the inverse matrix, with a computational cost of O(pk2).
For the discrete regression, the computational cost is O(N2M2). Fig. 2 (right)
shows the mean and standard deviation training times for the same protocol
described in Experiment 1. We run the experiment 10 times and show the mean
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Fig. 2. Left: Number of training images (x-label) vs. Memory Units (y-label). Each line
represents the memory requirements for different number of images and perturbations
per image, see text. Right: Number of training images (x-label) vs. time, in seconds
(y-label).

and the standard deviation. As expected, the continuous regression and the dis-
crete regression with one perturbation are the less computationally expensive
algorithms.

4.3 Generalization

The last experiment measures the fitting and generalization performance. For
the LFPW database, we have selected 789 training images from the training set
and 227 testing images from the testing set (those that were available), whereas
for the BioID we randomly selected 1012 images for training and 506 for testing.
For the discrete regression, we used 20, 50 and 100 perturbations for each image.
PCA was computed using the training images preserving 90% of the energy. The
λ of the regularization was chosen by cross-validation. For the testing images,
the ground truth landmarks are known, and we randomly perturb the non-
rigid parameters (the rigid parameters are fixed) with σ = 3, that is equivalent
to perturb the parameters three standard deviations. First row of Fig. 4 and
Fig. 5 show some examples of the initial perturbations for each database. After
converge, we computed the mean square error (MSE) between the ground-truth
landmarks and the ones returned by our algorithm, divided by the inter-ocular
distance. All methods use the same initialization.

We compared the performance of three methods: the discrete algorithm (for
3 ranges of perturbation), the continuous one, and approximating the regression

matrix for the Jacobian, i.e., R =
(
(Jp
i )T (Jp

i )
)−1

(Jp
i )T . The last approximation

was first proposed by Cootes et al. [1]. In the case of having several training
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Fig. 3. Cumulative RMSE for the LFPW (top) and BioID (bottom) databases. As can
be seen, the Continuous method (black) outperforms the other methods. The Jacobian
approximation is not valid when the initialization is far from the ground-truth data.

images, the regression matrix would be the average:

R =

(
N∑
i=1

(Jp
i )T (Jp

i )

)−1( N∑
i=1

Jp
i

)T
. (13)

Fig. 3 shows the cumulative error for both databases. Fig. 4 and Fig. 5 show
six examples (of both databases) of the initialization of the algorithm (first
row), the best discrete regression matrix (100 perturbations) fitting (second row),
and the continuous regression (third row). It is worth noting that the Jacobian
approximation only works when the initialization is close to the ground-truth.

5 Conclusions and future work

This paper presents a continuous method to train a linear regressor for dis-
criminative fitting. The key idea is to assume a continuous motion parameter
space and integrate over it, rather than discretely sampling the motion parame-
ter space. Three benefits follow: it is more computationally efficient in space and
time, and provides a better generalization. Although the method has worked well
in practice, a major limitation is the range of displacements that it can learn,
due to the linealization in Equation 6.

To solve the problem of learning large displacements, in further work we will
explore using several linealization points or using additive linealizations. That
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Fig. 4. Images from the LFPW database (best viewed in color). First row shows the
perturbed landmarks, second row the estimated landmarks using discrete regression
(using 100 perturbations), and the third row the estimated landmarks using our con-
tinuous regression.

is, consider δp = δp1 + δp2. Then, d(f(x; δp0 + δp1 + δp2)) ≈ d(f(x; δp0 +
δp1)) + Jpδp2 ≈ · · · . Finally, we have illustrated the benefits of our continuous
approach using the linear regression model, but our results are more general and
can be extended to other discriminative models rather than linear regression.
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20. Saragih, J., Göcke., R.: Learning AAM fitting through simulation. Int’l Journal
on Pattern Recognition 42(11) (2009) 2628–2636

21. Belhumeur, P. N., Jacobs, D. W, Kriegman, D. J., Kumar, N.: Localizing Parts of
Faces Using a Consensus of Exemplars. CVPR (2011)

22. Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. Int’l
Journal on Computer Vision 56(3) (2004) 221–255

23. Matthews, I., Baker, S.: Active Appearance Models Revisited. Int’l Journal on
Computer Vision 60(2) (2004) 135–164

24. Lucas, B., Kanade, T.: An Iterative image registration technique with an applica-
tion to stereo vision. IJCAI81 (1981)

25. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer (1997)

26. Levin, A., Shashua, A.: Principal Component Analysis over continuous subspaces
and intersection of half-spaces. ECCV (2002)

27. Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: Multi-PIE. AFGR
(2008)

28. Jesorksy, O., Kirchberg, K. J., Frischhold, R. W.: Robust face detection using the
hausdorff distance. Int’l Conference on Audio- and Video-Based Biometric Person
Authentication (2001)

29. Saragih J. , Lucey S. and Cohn, J. F.: Deformable Model Fitting by Regularized
Landmark Mean-Shift . Int’l Journal of Computer Vision, 91(2) (2011) 200–215

30. X. Zhu, D. Ramanan. Face detection, pose estimation and landmark localization
in the wild CVPR (2012)



14 E. Sánchez-Lozano, F. De la Torre, D. González-Jiménez

A Integral Resolution

This appendix provides details of the solution for the ingregrals in Equation 9.

A.1 Constant Integral∫
dδp =

∫ σ1

√
λ1

−σ1

√
λ1

∫ σ2

√
λ2

−σ2

√
λ2

...

∫ σt

√
λk

−σt

√
λk

dδp1 dδp2... dδpk

= 2k
k∏
i=1

σi
√
λi

(14)

A.2 Linear Integral∫
δp dδp =

(∫
δp1 dδp, ...,

∫
δpk dδp

)T
(15)

Considering each equation:∫
δpi dδp =

∫ σ1

√
λ1

−σ1

√
λ1

...

∫ σk

√
λk

−σk

√
λk

δpi dδp1 dδp2... dδpk

= 0 (16)

So: ∫
δpdδp =

(
0, 0, ..., 0

)T
= 0k×1 (17)

A.3 Quadratic Integral

∫
δpδpT dδp =


∫
δp21 dδp

∫
δp1δp2 dδp · · ·

∫
δp1δpk dδp∫

δp2δp1 dδp
∫
δp22 dδp · · ·

∫
δp2δpk dδp

...
...

. . .
...∫

δpkδp1 dδp
∫
δpkδp2 dδp · · ·

∫
δp2k dδp

 (18)

By steps: ∫
δp2i dδp =

1

3
σ2
i λi2

k
k∏
j=1

σj
√
λj (19)

∫
δpiδpj dδp = 0 (20)

Then: ∫
δpδpT dδp = 2k

( k∏
i=1

σi
√
λi
)
Λ(σ) (21)


