Biography
Since 2019 I am with the Samsung AI Center – Cambridge, where I hold a role of Senior Research Scientist. From September 2016 to March, 2019, I was with the Computer Vision Lab, at the University of Nottingham. I obtained my PhD degree in Computer Science from the University of Nottingham in 2017, with a thesis on Continuous Regression for Face Tracking. In my previous life, I obtained my MSc in Signal Theory and Communications and my MEng in Telecommunications Engineering from the University of Vigo (Spain), in 2011 and 2009, respectively (GPA 8.0/10.0). I visited the Human Sensing Lab @ CMU for 6 months in 2011. My PhD was partially funded by the Vice-Chancellor’s Scholarship for Research Excellence, as well as by the School of Computer Science scholarship. Prior to this, I received a scholarship from the Fundación Pedro Barrié, to do a research stay @ the CVLab in Nottingham, in 2013.
My research interests are on the use of Deep Learning techniques for Facial Expression Recognition, as well as the fundamental theory behind the recent developments in generative methods using Deep Learning (VAEs and GANs).
Publications
2024
Multiscale Vision Transformers meet Bipartite Matching for efficient single-stage Action Localization
I. Ntinou^, E.Sanchez^, G.Tzimiropoulos (^Equal contribution)
IEEE Int’l Conf. on Computer Vision and Pattern Recngonition (CVPR)
2023
From Keypoints to Object Landmarks via Self-Training Correspondence: A novel approach to Unsupervised Landmark Discovery
D. Mallis, E Sanchez, M. Bell, G. Tzimiropoulos
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Bayesian prompt learning for image-language model generalization
MM. Derakhshani, E Sanchez, A. Bulat, VGT da Costa, CGM. Snoek, G. Tzimiropoulos, B. Martinez
IEEE Int’l Conf. on Computer Vision (ICCV)
ReGen: A good Generative zero-shot video classifier should be Rewarded
A Bulat, E Sanchez, B Martinez, G Tzimiropoulos
IEEE Int’l Conf. on Computer Vision (ICCV)
2022
Pre-training strategies and datasets for facial representation learning
A. Bulat, S. Cheng, J. Yang, A. Garbett, E. Sanchez, G. Tzimiropoulos
European Conf. on Computer Vision (ECCV).
2021
Affective Processes: Stochastic modelling of temporal context for emotion and facial expression recognition
E. Sanchez, M. K. Tellamekala, M. Valstar, G. Tzimiropoulos
IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR)
A transfer learning approach to heatmap regression for action unit intensity estimation
I. Ntinou, E. Sanchez, A. Bulat, M. Valstar, G. Tzimiropoulos
IEEE Transactions on Affective Computing (TAFFC)
Self-supervised learning of person-specific facial dynamics for automatic personality recognition
S. Song, S. Jaiswal, E. Sanchez, G. Tzimiropoulos, L. Shen, M. Valstar
IEEE Transactions on Affective Computing (TAFFC)
Improving memory banks for unsupervised learning with large mini-batch,consistency and hard negative mining
A. Bulat, E. Sanchez-Lozano, G. Tzimiropoulos
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
2020
Unsupervised learning of object landmarks via self-training correspondence
D. Mallis, E. Sanchez, M. Bell, G. Tzimiropoulos
Advances in Neural Information Processing Systems (NeurIPS).
Semi-supervised facial action unit intensity estimation with contrastive learning
E. Sanchez, A. Bulat, A. Zaganidis, G. Tzimiropoulos.
Asian Conf. on Computer Vision (ACCV).
Unsupervised face manipulation via hallucination
K. Kusumam, E. Sanchez, G. Tzimiropoulos
Int’l Conf. on Pattern Recognition (ICPR)
Self-supervised learning of dynamic representations for static images
S Song, E. Sanchez, L. Shen, M. Valstar.
Int’l Conf. on Pattern Recognition (ICPR)
A recurrent cycle consistency loss for progressive face-to-face synthesis
E. Sanchez, M. Valstar
IEEE Int’l Conf. on Automatic Face Gesture Recognition (FG, Oral)
2019
Object landmark discovery through unsupervised adaptation
E. Sanchez, G. Tzimiropoulos
Advances in Neural Information Processing Systems (NeurIPS).
Dynamic Facial Models for Video-based Dimensional Affect Estimation
S. Song, E. Sanchez-Lozano, M. K. Tellamekala, L. Shen, A. Johnston, M. Valstar
Int’l Workshop on Computer Vision for Physiological Measurement (ICCV’W - CVPM)
2018
Joint Action Unit localisation and intensity estimation through heatmap regression
E. Sanchez, G. Tzimiropoulos, M. Valstar
British Machine Vision Conf. (BMVC).
A functional regression approach to facial landmark tracking
E. Sanchez-Lozano, G. Tzimiropoulos, B. Martinez, F. De la Torre, M. Valstar
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(9), 2037–2050. (TPAMI)
2017
Fera 2017 - addressing head pose in the third facial expression recognition and analysis challenge
M. Valstar, E. Sanchez-Lozano, J. Cohn, L. Jeni, J. Girard, Z. Zhang, L. Yin, M. Pantic
IEEE Int’l Conf. on Automatic Face Gesture Recognition (FG).
Continuous Regression: A functional regression approach to real-time facial landmark tracking
E. Sanchez-Lozano
PhD Thesis (PhD)
2016
Cascaded continuous regression for real-time incremental face tracking
E. Sanchez-Lozano, B. Martinez, G. Tzimiropoulos, M. Valstar
European Conf. on Computer Vision (ECCV).
Cascaded regression with sparsified feature covariance matrix for facial landmark detection.
E. Sanchez-Lozano, B. Martinez, M. Valstar
Pattern Recognition Letters, 73, 19–25. (PRL)
Pre-2016
Blockwise linear regression for face alignment
E. Sanchez-Lozano, E. Argones-Rua, J. Alba-Castro, J.
British Machine Vision Conf. (BMVC 2013).
Audiovisual three-level fusion for continuous estimation of Russell’s emotion circumplex
Enrique Sánchez-Lozano, Paula Lopez-Otero, Laura Docio-Fernandez, Enrique Argones-Rúa and José Luis Alba-Castro
Int’l Workshop on Audio/visual Emotion Challenge (AVEC)
Continuous regression for non-rigid image alignment
E. Sanchez-Lozano, F. De la Torre, D. Gonzalez-Jimenez
European Conf. on Computer Vision (ECCV 2012).