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ABSTRACT
Predicting human emotions is catching the attention of many
research areas, which demand accurate predictions in uncon-
trolled scenarios. Despite this attractiveness, designed sys-
tems for emotion detection are far off being as accurate as de-
sired. Two of the typical measurements in human emotions
are described in terms of the dimensions valence and arousal,
which shape the Russell’s circumplex where complex emo-
tions lie. Thus, the Affect Recognition Sub-Challenge (ASC)
of the third AudioVisual Emotion and Depression Challenge,
AVEC’13, is focused on estimating these two dimensions.
This paper presents a three-level fusion system combining
single regression results from audio and visual features, in
order to maximize the mean average correlation on both di-
mensions. Five sets of features are extracted (three for audio
and two for video), and they are merged following an itera-
tive process. Results show how this fusion outperforms the
baseline method for the challenge database.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Audiovisual features, multimodal fusion, affective comput-
ing, eigen-models, support vector regression.
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Figure 1: Russell’s Emotion Circumplex

1. INTRODUCTION
Affective Computing [21] is an interdisciplinary subject

whose goal is providing machines with the ability of recog-
nizing, as well as synthesizing, people’s emotions. In recent
years, the interest on affective computing has been growing
at the time as many applications were inquired for multiple
markets: entertainment, education, marketing and health
are the four major niches demanding affective solutions. Due
to such increased interest, many products and applications
have been developed in recent years, although research has
not converged to an ultimate solution. Two of the most
important cues on Affective Computing are the audiovisual
signals. Beyond what is transmitted by our words, more
than a 50% of our emotion state is transmitted by our ex-
pressive face and voice. Thus, many efforts are put towards
improving emotion detection by audiovisual features.

Within emotion detection we can distinguish between two
major trends: detecting appearance subtle changes and de-
tecting complex states. The first one typically comprises
detecting either an overall basic emotion or frame-by-frame
muscular movements (Action Units). The second one com-
prises detecting complex states in a continuous space within
which emotions lie. Both trends pave research lines of many
leading groups. Great efforts have been made to measure the
state of the art in both trends, but the lack of spontaneous



Figure 2: Overview of the emotion identification system

databases, jointly with the fact that each targeted research
needs a specific database, make the task formidably com-
plex. One of the best options to measure the state of the art
is working in a common framework, like the one proposed
in international challenges. This was revealed on the suc-
cess of the first Facial Expression Recognition and Analysis
challenge (FERA’11) [36], of the different challenges for ex-
tracting paralinguistic information from speech [27, 28, 30,
29, 31], and of the first and second AudioVisual Emotion
Challenge (AVEC’11,’12) [33, 32]. This year, the challenge
is also focused on depression detection, highlighting the fact
that health is an important target for affective computing.
The choice of valence (positivity or negativity) and arousal
(activity) as dimensions to be estimated in AVEC’13 [37]
remarks that both explain almost all complex states, as the
Russell’s circumplex model suggests [23]. This model (shown
in Figure 1), shows how many emotional states can be de-
scribed in terms of valence and arousal.
Most of the existing works on the continuous audiovisual

emotion recognition task present systems whose key points
address three aspects: the feature extraction for the audio
and video signals, and the prediction and fusion strategies
used for obtaining the continuous values representing the
emotional state.
For the visual part, many typical appearance features have

been used, based on their previous successful performance on
other face analysis tasks, such as face alignment, face recog-
nition or age and gender recognition. Classical approaches
include Local Phase Quantisation (LPQ) [37], Gabor [16],
Local Binary Patterns (LBP) [35], and Local Gabor Binary
Pattern (LGBP) [34]. Recently, extensions from Three Or-
thogonal Planes (LPQ-TOP [12], LGBP-TOP [2]), have also
been successfully used. Also, many geometric features have
been proposed, including those based in Active Appearance
Models [34] or Constrained Local Models [19]. Regarding
the learning stage of emotion recognition using visual cues,
the most extended methods used are SVM for classification
tasks [16], and ε-SVR for regression tasks. What differs
among different works is the type of kernel, as well as the
number of kernels used [34]. Apart from ε-SVR, Kernel Re-

gression was also explored with good results [19]. From all
these techniques, it is a hard task selecting which combina-
tion is the most promising one. It remains unclear whether
some features are better than others for the emotion recog-
nition task, but on specific environments (same database,
regressor, ...). The same occurs in the learning stage, since
many regression techniques, such as, e.g., Gradient Boost-
ing, have not been explored yet for the emotion recognition
task.

In the audio part, the extracted features are generally
based on measurements related to the prosodic and spectral
characteristics of the audio signal. For example, the Mel-
frequency cepstrum coefficients (MFCC), the energy, the
zero-crossing rate, the speech rate and the pitch have been
used successfully in affect recognition [41]. However, a few
years ago a successful method for using a supra-segmental
modeling of the audio characteristics emerged. This is based
on a set of statistical functionals extracted from the above
features (called acoustic Low-Level Descriptors (LLD)) [32,
33]. Approaches combining acoustic features and spoken
words, as well as approaches using linguistic features to im-
prove spontaneous emotion recognition, have also been pro-
posed [25]. It is worth noting that deciding the optimal
audio feature set is still an open research problem.

As in the visual part, different machine learning algo-
rithms can be used for the learning stage. Several methods
are based on context-dependent frameworks. For example,
in [17] a system based on Hidden Markov Models was pro-
posed. An advanced technique based on context modelling
using Long Short-Term Memory Neural Networks (LSTM-
NN) was investigated [40]. These systems provide the ad-
vantage of encoding dynamics within the learning algorithm.
Other approaches use a static predictor as, for instance, the
well-known Support Vector Machine [26, 5].

Several fusion strategies may be used for merging the vi-
sual and audio information. Feature-level fusion (also called
early fusion) can be performed by merging different sets
of features from each modality into one cumulative struc-
ture and feeding it to a single classifier. Another solution is
decision-level fusion (or late fusion); each feature set feeds



Figure 3: Overview of the video-based methods

one classifier and all the classifier outputs are fused to pro-
vide the final output. An output-associative fusion frame-
work is presented in [18] and compared to feature-level and
decison-level fusion approaches.
With the aim of predicting the Russell’s Circumplex di-

mensions, we present an audiovisual system combining sev-
eral simple audio and video features. Each feature vector
is projected onto each emotion dimension using classical re-
gression methods. The strength of the proposed method
resides on how spectral audio features are computed and
how each source is combined through an iterative algorithm.
Moreover, based on an existing correlation among both di-
mensions, we present an algorithm for their mixing and rees-
timation.
The system is presented in response to the ASC subchal-
lenge of the AVEC’13, which makes use of the DEPRES-
SION database, consisting of 150 videos equally divided into
training, development, and test sets. This database has been
continuously annotated by a team of 23 naive raters, and
each video was annotated by only a single rater. Although
each rater made annotations for each dimension separately,
the fact that each video was tagged only by one rater sug-
gests a possible correlation among dimensions, which is suc-
cessfully explored in this work. As stated above, we have
extracted three kinds of features for audio sequences, and
two kinds of features for video sequences. Then, we have
explored a three-level fusion system in order to maximize
the average correlation. The first level fusion treats audio
and video separately. The second one combines results from
audio and video. Finally, the third one combines audiovi-
sual results from both dimensions. The whole strategy is
depicted in Figure 2. The rest of the paper is organized
as follows: Sections 2 and 3 review the feature extraction
method for video and audio, respectively; Sections 4 and 5
present the audio and video learning systems, respectively;
Section 6 presents the audiovisual fusion strategy; Section
7 presents the experiments and results obtained for both
the development and test sets; and Section 8 presents the
conclusions.

2. VIDEO FEATURES
Faces were extracted using the bounding boxes given in

the database. After the face was localised, the eyes were
located using ASEF filters [3], and the image was rotated
and scaled so that the eyes lie in the same horizontal line,
and the interocular distance is set to 45 pixels (which will be
the half of the width of the cropped face). After aligning and
scaling, face is cropped to a single size of 105×90. Then, we

have extracted two sets of features: LBP [20] and Gabor [8],
which have been widely used in face analysis systems, such
as face recognition [1, 9] or gender recognition [6]. LBP
histograms were extracted using 6 × 7 regions of 15 × 15
pixels, and concatenated in a single vector. Each histogram
consists of 59 bins, and is first normalised, truncated to 0.2,
and renormalised again [39]. For Gabor, we used a 10 × 10
uniform grid. At each point of the grid, we have obtained
the module of the output of 40 complex Gabor filters, using
5 frequencies and 8 orientations. Thus, we have a vector
consisting of 2748 dimensions for LBP, and 4000 for Gabor.
An overview of the feature extraction system can be seen
in Figure 3. In order to deal with the high dimension of
the feature space, we have applied PCA on a random subset
of the training database, retaining 85% of the energy. The
LBP feature vector was then reduced to ∼ 500 dimensions,
and the Gabor vector was reduced to ∼ 300. This feature
extraction system follows the one presented in [6] for gender
recognition. Considering the similar results obtained for the
studied sizes in that work, we have decided, for the sake of
simplicity, to choose the smallest one. The same philosophy
was taken into account for selecting the kind of features
among existing ones. Studying other kinds of features is out
of the scope of this paper, even though further work shall
address it.

3. AUDIO FEATURES
As speech signals are not stationary, it is common in

speech processing to divide them into frames of a few milisec-
onds (typically 5-100 ms) that can be considered to be ap-
proximately stationary [22]. From these frames many dif-
ferent types of temporal, spectral, energy and perceptual
descriptors can be extracted from these frames. An issue
that must be considered for the selection of efficient audio-
related features for emotion characterization and recognition
is the time extent used for feature extraction. Thus, it is
possible to distinguish between low-level descriptors or in-
stantaneous descriptors, which are computed for each time
frame, and functionals or global descriptors, which are com-
puted for the whole audio signal or an audio segment cov-
ering several frames. There is controversy in the literature
about which of the above descriptors are more suitable for
emotion recognition [7]; thus, the use of both of them is pro-
posed in this work. Specifically, three different audio feature
sets are extracted from the audio signals. Two of them are
low-level descriptors (LLD) related to the temporal, energy
and spectral characteristics of the audio signal, and the third



Figure 4: Overview of the audio-based methods

set consists of functionals extracted from a set of prosodic
and spectral low-level descriptors.

3.1 Spectral related features
Two different sets of low level descriptors are used, which

consist of features that are widely used in speech emotion
recognition. The first set is composed of cepstral-based fea-
tures, and it includes 16 Mel-frequency cepstral coefficients
(MFCC) plus their derivatives, a common choice for emo-
tional speech analysis [24]. The second set is composed of
temporal, energy and spectral based features. These feature
sets are summarized in Table 1. All the features were ex-
tracted every 10 ms using a 40 ms Hamming window. It is
not possible to identify an emotion with a context of only
40 ms, a bigger context is necessary. To obtain vectors that
represent a bigger context, the audio is segmented using a
sliding window of 3 s with 1 s of overlap. These segments
are processed with an eigen-space technique in order to ob-
tain a low-dimensional representation suited for arousal and
valence estimation. Eigen-spaces techniques have been suc-
cessfully used for speaker verification purposes, e.g. in [14]
and [38]. In the eigen-space framework, statistical adapta-
tion from a Universal Background Model (UBM) represented
by a Gaussian Mixture Model is performed on a reduced sub-
space. Therefore, speakers are defined in a low-dimensional
subspace where differences between them are easily found.
The application of eigen-spaces techniques to continous emo-
tion detection is not straightforward for two reasons: (1) the
eigen-space must be able to represent the emotions taking
out the speaker-dependent information; (2) speaker repre-
sentation is discrete, whilst emotion representation is con-
tinuous, which means that emotional training data must be
somehow discretized in order to apply the standard eigen-
space techniques.

Table 1: Audio features.

MFCCs (48) (MFCC)
MFCC 1-16 plus delta and acceleration
Energy and spectral features (34) (E&S)
Loudness, zero crossing rate, energy in bands
from 250–650Hz, 1 kHz–4 kHz, 25%, 50%, 75%,
and 90% spectral roll-of points,spectral flux,
centroid, entropy, variance, skewness, kurtosis,
psychoacousitc sharpness, harmonicity, flatness

Before addressing the emotion detection task, an overview
of the eigen-space approach for speaker representation is pre-
sented. Given the UBM supermean vector:

m =
[
µ′

1, . . . ,µ
′
M

]
(1)

where µi is the D-dimensional mean of the ith UBM Gaus-
sian mixture, M is the number of mixtures in the UBM, and
D is the dimension of the acoustic features, the speaker u
supermean vector is defined as:

mu = m+Vyu (2)

where V is a DM×R matrix characterizing the eigen-space,
with R � DM , and yu is the low-dimensional speaker u
characterization.

Unlike in the eigenspeaker characterization case described
above, our aim is providing a compact representation of
arousal and valence of speech. Hence, speech vectors are
clustered into different emotional clusters, which we denote
here as protoclasses, depending on the values of arousal and
valence in the training set, instead of grouping speech vec-
tors attending to the speaker. The LBG algorithm [15] is
used for this task. The number of clusters chosen for this
purpose was finally 8. All the vectors belonging to a given
protoclass in the training set are here playing the same role
as those belonging to a given speaker u in the eigenspeaker
framework, thus the obtained matrix V is modelling the
maximum variation directions of the UBM supermean re-
garding the values of arousal and valence. There are differ-
ent techniques that can be used for obtaining both V and
yu. Taking into account that our main limitation is the low
number of acoustic vectors used to infer the arousal and va-
lence, the probabilistic method described in [13] was chosen
for that purpose but, as stated above, u does not represent
a speaker but a protoclass.

Anytime a test segment of emotional speech se is pro-
cessed, its posterior emotional characterization ye is ob-
tained performing the adaptation described in [13]. This
emotional characterization vector is later used as input for
the arousal and valence regressors, as described in Sec. 5.1.

3.2 Functionals
The third acoustic feature set consists of feature vectors of

dimension 2268 given to the participants of AVEC’13 chal-
lenge. These functionals were extracted using a sliding win-
dow of 3 s and an overlap of 1 s. As the different features
range in different values, all the features were normalized to
have zero mean and unit variance.

The dimension of these high dimensional feature vectors
was reduced in order to consider only the most relevant ones
using a correlation based feature subset selection (CFS) al-
gorithm [10]. This widely used feature selection algorithm
searches for the best subset of features, where best is heuris-
tically defined taken two criteria into account: 1) the good-
ness of the individual features for predicting the class and
2) their correlation with the other features. Therefore, good
subsets of features contain features that are highly correlated
with the class but uncorrelated with each other. Thus, CFS
directly handles correlated and irrelevant features. In or-
der to avoid an exhaustive search through the 2268 different
features, a best first search strategy was used: instead of
removing the useless features, the algorithm starts with an
empty set of features and the relevant features are added
as they are chosen. CFS was applied to extract the most



significant functionals for arousal and the most significant
functionals for valence, resulting in 34 features for arousal
and 47 features for valence.

4. EMOTION PREDICTION WITH VIDEO
FEATURES

We have trained an ε-SVR both for LBP and Gabor re-
duced features, using a linear kernel. For training, we ran-
domly selected 750 images per video, and 10-videos-out cross-
validation was performed on the training set. We have
trained one regressor for each kind of features and dimen-
sion, resulting in four regressors, two per dimension. As a
first idea, a simple linear combination should give the weight
for each dimension. This linear regression could be carried
out by rearranging the predictions of each ε-SVR into a two
column matrix, and obtaining a regression vector through
least squares against the ground-truth vector for the whole
training set. However, beyond the prohibitive amount of
training samples, this approach does not consider that each
video should be itself a sample, since they have different time
lengths, and the mean correlation between predictions and
ground truth may significantly differ for each video. Thus, if
we have several long videos that are wrongly predicted and
few short videos that are fairly well predicted, the regression
fusion vector will be unable to fit new samples correctly. On
the opposite side, when few long videos are properly pre-
dicted, the regression vector will overfit these videos, suffer-
ing from lack of generalization. Thus, we propose to treat
each video as a sample itself. Let d be the valence/arousal
dimension. The regression vector for each video i is obtained
as follows:

rid = di
t(D

i
p)

T
(
(Di

p)(D
i
p)

T
)−1

, (3)

where Di
p is the two-column matrix obtained by concatenat-

ing the Gabor and LBP predictions for all the frames from
video i, and di

t is the true dimension vector for the video
i. Then, a mean vector could be a first attempt for having
the fusion vector (called fd). However, the high variability
on each rid suggests that this is not a good choice. Let us
consider an initial estimated fd, then,

d̃i
p = Di

pfd, (4)

is the vector prediction for each video, and

ci = |corr(di
t, d̃

i
p)|, (5)

is the absolute value of Pearson’s correlation coefficient for
that video. The average of Pearson’s correlation is then

c =
1

N

N∑
i=1

ci, (6)

where N is the number of videos. Thus, what we propose is,
instead of considering the mean regression vector, to equal-
ize the contribution of each video by weighting each rid with
the term (1 − ci). This term will increase the contribution
of regressor vectors of bad predicted videos. This equaliza-
tion term was inspired on the way AdaBoost weighs training
samples when updating the output regressor. Then, fd is
calculated as follows:

fd ← fd +

N∑
i=1

rid(1− ci). (7)

After fd is calculated, we can go back to Eqn. (4) and Eqn. (5),
iteratively, until c is not improved. Algorithm 1 summarizes
the proposed learning method.

Algorithm 1 Procedure for training the linear combination
of regressors for dimension d.

Initialize fd =

(
1
1

)
for each videoi do

Compute rid = di
t(D

i
p)

T
(
(Di

p)(D
i
p)

T
)−1

end for
repeat

for each videoi do
d̃i
p = Di

pfd

ci = |corr(di
t, d̃

i
p)|

end for
fd ← fd +

∑
i r

i
d(1− ci)

until
∑

i(ci − cprevi ) ≤ 0

When predicting new frames, a score is individually ob-
tained for each kind of features, and then, the fusion is ob-
tained as follows:

score = fd(1) ∗ scoreLBP + fd(2) ∗ scoreGabor (8)

5. EMOTION PREDICTION WITH AUDIO
FEATURES

Two different approaches are used for performing arousal
and valence identification. The first strategy is applied to
the spectral based features and the second one is applied to
the functionals.

5.1 Prediction with spectral based features
After obtaining the vectors corresponding to the emotion-

characterized segments by applying the eigen-model strategy
described in Sec. 3.1, four different sets of 50-dimensional
vectors are obtained: one for the characterization of arousal
with MFCC+∆+∆∆ features, one for the characterization
of valence with MFCC+∆+∆∆ features, one for the char-
acterization of arousal with energy and spectral features,
and one for the characterization of valence with energy and
spectral features. Estimated values of arousal and valence
have to be extracted from each of these feature vectors; to
do so, canonical correlation analysis is applied to each set
of vectors. This technique finds basis vectors for two sets of
variables (on the one hand, the features, and on the other
hand, arousal or valence) such that the correlation between
the projection of the variables onto these basis vectors are
mutually maximized [11]. Given the feature vectors of the
training data and their corresponding values for arousal (va-
lence), two linear transformations, one for the feature vec-
tors and another one for the arousal (valence) groundtruth
labels, are learnt. These linear transformations are applied
to the testing data, obtaining as a result a prediction for the
arousal (valence) for each feature vector.

5.2 Prediction with functionals
Two ε-Support Vector Regressors (SVR) with a linear ker-

nel were trained with the CFS-functionals extracted from
the training set (one for arousal and one for valence). There
is a training label for arousal (valence) every 1/30 s; as the



CFS-functionals were obtained at a rate of 2 seconds us-
ing overlapped segments of 3 seconds, the arousal (valence)
value at the end of the 3-second window is assigned to the
feature vectors in order to equal the rates of the feature vec-
tors and the labels. SVR parameters were optimized on the
training dataset using 5-fold cross-validation and validated
on the development dataset. LibSVM library [4] was used
for this task.

5.3 Fusion
Three different predictions for arousal and valence are ob-

tained from the different audio features. A fusion of these
predictions is performed by applying canonical correlation
analysis once again, but this time the linear transformations
are learnt from the predictions of arousal (valence) on the
training data and the groundtruth labels. This fusion cor-
responds to the first level of the multilevel fusion strategy
depicted in Fig. 2.

6. CORRELATION-BASED FUSION
Once the first-level fusions of the audio and video pre-

dictions are obtained, the next step consists of a fusion of
these two inputs. We have applied Algorithm 1 again for
the second-level fusion illustrated in Fig. 2. Instead of hav-
ing the LBP and Gabor prediction vectors, now we have
the audio and video predictions for each dimension. After
the second level fusion, unique values for arousal and va-
lence are given. Although ideally arousal and valence are
independent dimensions, this actually does not occur on the
challenge dataset. The fact that each video was labelled by a
single rater suggests that there may be a correlation between
both dimensions. The average of Pearson’s correlations be-
tween both dimensions is 0.26 for the training set, and 0.25
for the development set, which implies that a combination
of both dimensions may be considered in the last step of the
prediction. Thus, we shall consider the information each
dimension provides respect to the other. As stated before,
a whole regression matrix is not an ideal choice. Previous
works attempted to fuse both dimensions. In [18], an output-
associative framework was presented, combining scores like
the way presented in Fig. 2, by using a regression learn-
ing technique (Bidirectional Long Short-Term Memory Neu-
ral Networks, BLSTM-NN). In [19], a Kernel Regressor was
learned for combining all the scores. However, this regres-
sion method was learned using a subset of the training set,
which is not as accurate as considering the whole dataset.
Thus, we propose to use a modified version of Algorithm 1,
where a regression matrix (F ∈ <2×2) combining both di-
mensions is learned. Let ai

t,p, v
i
t,p be the ground-truth (t)

and independently predicted (p) vectors for arousal (a) and
valence (v), respectively, and Di

t,p = [ai
t,p v

i
t,p]. Algorithm 2

summarizes the proposed method. Now, each sample is the
regression matrix for each video:

Ri = Di
t(D

i
p)

T
(
(Di

p)(D
i
p)

T
)−1

. (9)

As in Algorithm 1, Pearson’s correlations serve as weights
for that samples. Now, we have one Pearson’s correlation
value for each dimension. These Pearson’s correlations val-
ues are then used for weighting the corresponding row of
F (the first row will be used for weighting arousal values,

whereas the second one will weighs valence values):

F← F+

N∑
i=1

(
(1− cai )R

i ◦
(
1 1
0 0

)
+ (1− cvi )R

i ◦
(
0 0
1 1

))
,

(10)
where ◦ denotes the Hadamard product. One mainly differ-
ence between our approach and that presented in [18] is that
our approach attempts to maximize the average of Pearson’s
correlations, whereas SVR or a BLSTM-NN optimize other
cost functions.

Algorithm 2 Procedure for training the fusion matrix.

Initialize F =

(
1 1
1 1

)
for each videoi do

Compute Ri = Di
t(D

i
p)

T
(
(Di

p)(D
i
p)

T
)−1

end for
repeat

for each videoi do
D̃i

p ← Di
pF

ai
p = D̃i

p

(
1
0

)
vi
p = D̃i

p

(
0
1

)
cai = |corr(ai

t,a
i
p)|

cvi = |corr(vi
t,v

i
p)|

end for
Update F using Eqn. (10)

until
∑N

i=1(c
a
i + cvi − (cai + cvi )

prev) ≤ 0

Once the independent scores are computed, they must be
recomputed as follows:

arousal← F(1, 1) ∗ arousal + F(2, 1) ∗ valence
valence← F(1, 2) ∗ arousal + F(2, 2) ∗ valence (11)

7. EXPERIMENTAL RESULTS

7.1 Analysis of the eigen-space modelling ap-
proach

A novel use of eigen-space techniques for continuous emo-
tion prediction was described in Sec. 3.1. The suitability
of that strategy for continuous detection of arousal and va-
lence is supported by results in Table 2, where it can be seen
that the correlation between the groundtruth labels and the
estimated labels obtained from the MFCCs increases to a
great extent when using the eigen-space technique, while
dramatically reducing the dimensionality of the feature vec-
tors. Specifically, when no eigen-space technique is used,
the feature vectors are equal to the supermean vectors m
of dimension M · D = 256 · 48 = 12288, according to the

Table 2: Pearson’s correlation averaged over the de-
velopment set with and without eigen-space mod-
elling when using 16 MFCCs plus their derivatives.

Eigen-space Dimension Arousal Valence Average
Yes 50 0.1721 0.1404 0.1562
No 12288 0.0903 0.0905 0.0904



Table 3: Pearson’s correlation averaged over the de-
velopment set of the Video Fusion strategies.

Method Arousal Valence Average
LBP 0.1204 0.1453 0.1328
Gabor 0.1334 0.1383 0.1358
Fusion 0.1192 0.1536 0.1364

Table 4: Pearson’s correlation averaged over the de-
velopment set for the Audio Fusion strategies.

Method Arousal Valence Average
MFCC 0.1721 0.1404 0.1562
S&E 0.1585 0.0990 0.1288
Functionals 0.1257 0.1268 0.1263
Expert-level fusion 0.1548 0.1327 0.1437
Feature-level fusion 0.1418 0.1214 0.1316

notation in Sec. 3.1, while the dimension is set to R = 50
when applying the eigen-space technique.

7.2 Analysis of fusion results
Table 3 shows the results obtained by the two video-based

prediction strategies compared with their fusion, performed
as described in Sec. 4. Table 5 also shows the results ob-
tained when applying this type of fusion to the fused audio
and video predictions (second-level fusion). These results
show that the fusion strategy described in Algorithm 1 im-
proves the average of arousal and valence with respect to
the corresponding individual systems, even though the pre-
diction for arousal (valence) is slightly worse than without
the fusion, as can be seen in Table 3 (Table 5).
Table 4 shows the correlations achieved by the three differ-

ent audio-based detection strategies. The eigen-space tech-
nique using MFCCs achieves the best results, followed by
the eigen-space technique using spectral and energy features.
Two different fusions were applied to the three systems:
the first one (expert-level fusion), which was described in
Sec. 5.3, consists of a fusion of experts, where each expert
produces an estimated value of arousal or valence, and these
three values are used for estimating a final value. The second
strategy performs fusion at feature level, i.e. the functionals
and the eigen-space characterized features are concatenated
to create a unique vector, and then canonical correlation
analysis is applied, obtaining a predicted value for arousal or
valence. Table 4 shows that the expert-level fusion is more
effective than the feature-level one, but none of them was
able to outperform the eigen-space technique with MFCCs
on the development dataset. Nevertheless, fusion results on
the training dataset were superior than the individual sys-
tems, which may suggest an overfitting issue.
Table 5 shows an important quality of the third-level fu-

sion strategy described in Algorithm 2. An improvement of
the average value is obtained after the correlation-based fu-
sion, although the prediction for valence works worse than
without this fusion, as shown in Table 5. These results are
the expected ones, as Algorithm 2 aims at improving the
average of arousal and valence, not each dimension individ-
ually. Although the average can be increased by setting the
final valence as the one predicted in the second-level of the
proposed approach, there is no evidence about whether this

Table 5: Pearson’s correlation averaged over the de-
velopment set of the described systems.

Method Arousal Valence Average
Video 0.1192 0.1536 0.1364
Audio 0.1548 0.1327 0.1437
Video+audio 0.1542 0.1727 0.1635
Correlation-based fusion 0.1921 0.1669 0.1795

Table 6: Pearson’s correlation coefficient averaged
over the test dataset.

Method Arousal Valence Average
Our method 0.1318 0.1352 0.1335
Baseline video 0.1340 0.0760 0.1050
Baseline audio 0.0900 0.0890 0.0890

improvement is going to be kept on the test set. Thus, these
results show the effectiveness of the proposed method.

7.3 Results on the test dataset
Table 6 shows the results obtained on the test set of the

AVEC’13 database, compared with those given in the base-
line paper [37]. This table shows that the proposed strategy
obtains a Pearson’s correlation coefficient higher than the
baseline systems. Also, comparing Tables 6 and 5, it can be
seen that the results obtained on the development and test
datasets are quite similar. Thus, the system demonstrates
that it is able to generalize among different data.

8. CONCLUSIONS
We have presented a complete audiovisual system for pre-

dicting both valence and arousal dimensions of human emo-
tions. We have measured each contribution (audio and video)
separately (level 1), as well as the merged contribution (level
2). In order to maximize the average between estimated
arousal and estimated valence, we have presented an iter-
ative algorithm for making the fusion considering the cor-
relation between both dimensions (level 3). This algorithm
penalizes one of the dimensions in increase of the average.
Also, the presented fusion have proven to have a good gen-
eralization, since it ensures that all the training videos con-
tribute equally, avoiding the problem of overfitting. These
fusion algorithms can be generalized to other kind of features
or dimensions. Further work should explore other measures
for the updating step, as they were designed for maximiz-
ing the global correlation measurement, which is used for
evaluating the AVEC’13 systems. Also, future work should
consider including other features, as well as an optimization
for the RMS Error.

A novel eigen-space based approach has been used for
emotion characterization of speech. Experimental results
showed that this technique is suitable for continuous pre-
diction of arousal and valence. A more general approach
using eigen-spaces, where features are not necessarily clus-
tered into emotional protoclasses, will also be explored in
future work.
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